Printer Friendly


As members of distinct classes have often been adapted by successive slight modifications to live under nearly similar circumstances,--to inhabit for instance the three elements of land, air, and water,--we can perhaps understand how it is that a numerical parallelism has sometimes been observed between the sub-groups in distinct classes. A naturalist, struck by a parallelism of this nature in any one class, by arbitrarily raising or sinking the value of the groups in other classes (and all our experience shows that this valuation has hitherto been arbitrary), could easily extend the parallelism over a wide range; and thus the septenary, quinary, quaternary, and ternary classifications have probably arisen.

As the modified descendants of dominant species, belonging to the larger genera, tend to inherit the advantages, which made the groups to which they belong large and their parents dominant, they are almost sure to spread widely, and to seize on more and more places in the economy of nature. The larger and more dominant groups thus tend to go on increasing in size; and they consequently supplant many smaller and feebler groups. Thus we can account for the fact that all organisms, recent and extinct, are included under a few great orders, under still fewer classes, and all in one great natural system. As showing how few the higher groups are in number, and how widely spread they are throughout the world, the fact is striking, that the discovery of Australia has not added a single insect belonging to a new order; and that in the vegetable kingdom, as I learn from Dr. Hooker, it has added only two or three orders of small size.

In the chapter on geological succession I attempted to show, on the principle of each group having generally diverged much in character during the long-continued process of modification, how it is that the more ancient forms of life often present characters in some slight degree intermediate between existing groups. A few old and intermediate parent-forms having occasionally transmitted to the present day descendants but little modified, will give to us our so-called osculant or aberrant groups. The more aberrant any form is, the greater must be the number of connecting forms which on my theory have been exterminated and utterly lost. And we have some evidence of aberrant forms having suffered severely from extinction, for they are generally represented by extremely few species; and such species as do occur are generally very distinct from each other, which again implies extinction. The genera Ornithorhynchus and Lepidosiren, for example, would not have been less aberrant had each been represented by a dozen species instead of by a single one; but such richness in species, as I find after some investigation, does not commonly fall to the lot of aberrant genera. We can, I think, account for this fact only by looking at aberrant forms as failing groups conquered by more successful competitors, with a few members preserved by some unusual coincidence of favourable circumstances.

Mr. Waterhouse has remarked that, when a member belonging to one group of animals exhibits an affinity to a quite distinct group, this affinity in most cases is general and not special: thus, according to Mr. Waterhouse, of all Rodents, the bizcacha is most nearly related to Marsupials; but in the points in which it approaches this order, its relations are general, and not to any one marsupial species more than to another. As the points of affinity of the bizcacha to Marsupials are believed to be real and not merely adaptive, they are due on my theory to inheritance in common. Therefore we must suppose either that all Rodents, including the bizcacha, branched off from some very ancient Marsupial, which will have had a character in some degree intermediate with respect to all existing Marsupials; or that both Rodents and Marsupials branched off from a common progenitor, and that both groups have since undergone much modification in divergent directions. On either view we may suppose that the bizcacha has retained, by inheritance, more of the character of its ancient progenitor than have other Rodents; and therefore it will not be specially related to any one existing Marsupial, but indirectly to all or nearly all Marsupials, from having partially retained the character of their common progenitor, or of an early member of the group. On the other hand, of all Marsupials, as Mr. Waterhouse has remarked, the phascolomys resembles most nearly, not any one species, but the general order of Rodents. In this case, however, it may be strongly suspected that the resemblance is only analogical, owing to the phascolomys having become adapted to habits like those of a Rodent. The elder De Candolle has made nearly similar observations on the general nature of the affinities of distinct orders of plants.

On the principle of the multiplication and gradual divergence in character of the species descended from a common parent, together with their retention by inheritance of some characters in common, we can understand the excessively complex and radiating affinities by which all the members of the same family or higher group are connected together. For the common parent of a whole family of species, now broken up by extinction into distinct groups and sub-groups, will have transmitted some of its characters, modified in various ways and degrees, to all; and the several species will consequently be related to each other by circuitous lines of affinity of various lengths (as may be seen in the diagram so often referred to), mounting up through many predecessors. As it is difficult to show the blood-relationship between the numerous kindred of any ancient and noble family, even by the aid of a genealogical tree, and almost impossible to do this without this aid, we can understand the extraordinary difficulty which naturalists have experienced in describing, without the aid of a diagram, the various affinities which they perceive between the many living and extinct members of the same great natural class.

Extinction, as we have seen in the fourth chapter, has played an important part in defining and widening the intervals between the several groups in each class. We may thus account even for the distinctness of whole classes from each other--for instance, of birds from all other vertebrate animals--by the belief that many ancient forms of life have been utterly lost, through which the early progenitors of birds were formerly connected with the early progenitors of the other vertebrate classes. There has been less entire extinction of the forms of life which once connected fishes with batrachians. There has been still less in some other classes, as in that of the Crustacea, for here the most wonderfully diverse forms are still tied together by a long, but broken, chain of affinities. Extinction has only separated groups: it has by no means made them; for if every form which has ever lived on this earth were suddenly to reappear, though it would be quite impossible to give definitions by which each group could be distinguished from other groups, as all would blend together by steps as fine as those between the finest existing varieties, nevertheless a natural classification, or at least a natural arrangement, would be possible. We shall see this by turning to the diagram: the letters, A to L, may represent eleven Silurian genera, some of which have produced large groups of modified descendants. Every intermediate link between these eleven genera and their primordial parent, and every intermediate link in each branch and sub-branch of their descendants, may be supposed to be still alive; and the links to be as fine as those between the finest varieties. In this case it would be quite impossible to give any definition by which the several members of the several groups could be distinguished from their more immediate parents; or these parents from their ancient and unknown progenitor. Yet the natural arrangement in the diagram would still hold good; and, on the principle of inheritance, all the forms descended from A, or from I, would have something in common. In a tree we can specify this or that branch, though at the actual fork the two unite and blend together. We could not, as I have said, define the several groups; but we could pick out types, or forms, representing most of the characters of each group, whether large or small, and thus give a general idea of the value of the differences between them. This is what we should be driven to, if we were ever to succeed in collecting all the forms in any class which have lived throughout all time and space. We shall certainly never succeed in making so perfect a collection: nevertheless, in certain classes, we are tending in this direction; and Milne Edwards has lately insisted, in an able paper, on the high importance of looking to types, whether or not we can separate and define the groups to which such types belong.

Finally, we have seen that natural selection, which results from the struggle for existence, and which almost inevitably induces extinction and divergence of character in the many descendants from one dominant parent-species, explains that great and universal feature in the affinities of all organic beings, namely, their subordination in group under group. We use the element of descent in classing the individuals of both sexes and of all ages, although having few characters in common, under one species; we use descent in classing acknowledged varieties, however different they may be from their parent; and I believe this element of descent is the hidden bond of connexion which naturalists have sought under the term of the Natural System. On this idea of the natural system being, in so far as it has been perfected, genealogical in its arrangement, with the grades of difference between the descendants from a common parent, expressed by the terms genera, families, orders, &c., we can understand the rules which we are compelled to follow in our classification. We can understand why we value certain resemblances far more than others; why we are permitted to use rudimentary and useless organs, or others of trifling physiological importance; why, in comparing one group with a distinct group, we summarily reject analogical or adaptive characters, and yet use these same characters within the limits of the same group. We can clearly see how it is that all living and extinct forms can be grouped together in one great system; and how the several members of each class are connected together by the most complex and radiating lines of affinities. We shall never, probably, disentangle the inextricable web of affinities between the members of any one class; but when we have a distinct object in view, and do not look to some unknown plan of creation, we may hope to make sure but slow progress.

Morphology. -- We have seen that the members of the same class, independently of their habits of life, resemble each other in the general plan of their organisation. This resemblance is often expressed by the term 'unity of type;' or by saying that the several parts and organs in the different species of the class are homologous. The whole subject is included under the general name of Morphology. This is the most interesting department of natural history, and may be said to be its very soul. What can be more curious than that the hand of a man, formed for grasping, that of a mole for digging, the leg of the horse, the paddle of the porpoise, and the wing of the bat, should all be constructed on the same pattern, and should include the same bones, in the same relative positions? Geoffroy St. Hilaire has insisted strongly on the high importance of relative connexion in homologous organs: the parts may change to almost any extent in form and size, and yet they always remain connected together in the same order. We never find, for instance, the bones of the arm and forearm, or of the thigh and leg, transposed. Hence the same names can be given to the homologous bones in widely different animals. We see the same great law in the construction of the mouths of insects: what can be more different than the immensely long spiral proboscis of a sphinx-moth, the curious folded one of a bee or bug, and the great jaws of a beetle?--yet all these organs, serving for such different purposes, are formed by infinitely numerous modifications of an upper lip, mandibles, and two pairs of maxillae. Analogous laws govern the construction of the mouths and limbs of crustaceans. So it is with the flowers of plants.

Nothing can be more hopeless than to attempt to explain this similarity of pattern in members of the same class, by utility or by the doctrine of final causes. The hopelessness of the attempt has been expressly admitted by Owen in his most interesting work on the 'Nature of Limbs.' On the ordinary view of the independent creation of each being, we can only say that so it is;--that it has so pleased the Creator to construct each animal and plant.

The explanation is manifest on the theory of the natural selection of successive slight modifications,--each modification being profitable in some way to the modified form, but often affecting by correlation of growth other parts of the organisation. In changes of this nature, there will be little or no tendency to modify the original pattern, or to transpose parts. The bones of a limb might be shortened and widened to any extent, and become gradually enveloped in thick membrane, so as to serve as a fin; or a webbed foot might have all its bones, or certain bones, lengthened to any extent, and the membrane connecting them increased to any extent, so as to serve as a wing: yet in all this great amount of modification there will be no tendency to alter the framework of bones or the relative connexion of the several parts. If we suppose that the ancient progenitor, the archetype as it may be called, of all mammals, had its limbs constructed on the existing general pattern, for whatever purpose they served, we can at once perceive the plain signification of the homologous construction of the limbs throughout the whole class. So with the mouths of insects, we have only to suppose that their common progenitor had an upper lip, mandibles, and two pair of maxillae, these parts being perhaps very simple in form; and then natural selection will account for the infinite diversity in structure and function of the mouths of insects. Nevertheless, it is conceivable that the general pattern of an organ might become so much obscured as to be finally lost, by the atrophy and ultimately by the complete abortion of certain parts, by the soldering together of other parts, and by the doubling or multiplication of others,--variations which we know to be within the limits of possibility. In the paddles of the extinct gigantic sea-lizards, and in the mouths of certain suctorial crustaceans, the general pattern seems to have been thus to a certain extent obscured.

There is another and equally curious branch of the present subject; namely, the comparison not of the same part in different members of a class, but of the different parts or organs in the same individual. Most physiologists believe that the bones of the skull are homologous with--that is correspond in number and in relative connexion with--the elemental parts of a certain number of vertebrae. The anterior and posterior limbs in each member of the vertebrate and articulate classes are plainly homologous. We see the same law in comparing the wonderfully complex jaws and legs in crustaceans. It is familiar to almost every one, that in a flower the relative position of the sepals, petals, stamens, and pistils, as well as their intimate structure, are intelligible on the view that they consist of metamorphosed leaves, arranged in a spire. In monstrous plants, we often get direct evidence of the possibility of one organ being transformed into another; and we can actually see in embryonic crustaceans and in many other animals, and in flowers, that organs, which when mature become extremely different, are at an early stage of growth exactly alike.

How inexplicable are these facts on the ordinary view of creation! Why should the brain be enclosed in a box composed of such numerous and such extraordinarily shaped pieces of bone? As Owen has remarked, the benefit derived from the yielding of the separate pieces in the act of parturition of mammals, will by no means explain the same construction in the skulls of birds. Why should similar bones have been created in the formation of the wing and leg of a bat, used as they are for such totally different purposes? Why should one crustacean, which has an extremely complex mouth formed of many parts, consequently always have fewer legs; or conversely, those with many legs have simpler mouths? Why should the sepals, petals, stamens, and pistils in any individual flower, though fitted for such widely different purposes, be all constructed on the same pattern?

On the theory of natural selection, we can satisfactorily answer these questions. In the vertebrata, we see a series of internal vertebrae bearing certain processes and appendages; in the articulata, we see the body divided into a series of segments, bearing external appendages; and in flowering plants, we see a series of successive spiral whorls of leaves. An indefinite repetition of the same part or organ is the common characteristic (as Owen has observed) of all low or little-modified forms; therefore we may readily believe that the unknown progenitor of the vertebrata possessed many vertebrae; the unknown progenitor of the articulata, many segments; and the unknown progenitor of flowering plants, many spiral whorls of leaves. We have formerly seen that parts many times repeated are eminently liable to vary in number and structure; consequently it is quite probable that natural selection, during a long-continued course of modification, should have seized on a certain number of the primordially similar elements, many times repeated, and have adapted them to the most diverse purposes. And as the whole amount of modification will have been effected by slight successive steps, we need not wonder at discovering in such parts or organs, a certain degree of fundamental resemblance, retained by the strong principle of inheritance.

In the great class of molluscs, though we can homologise the parts of one species with those of another and distinct species, we can indicate but few serial homologies; that is, we are seldom enabled to say that one part or organ is homologous with another in the same individual. And we can understand this fact; for in molluscs, even in the lowest members of the class, we do not find nearly so much indefinite repetition of any one part, as we find in the other great classes of the animal and vegetable kingdoms.

Naturalists frequently speak of the skull as formed of metamorphosed vertebrae: the jaws of crabs as metamorphosed legs; the stamens and pistils of flowers as metamorphosed leaves; but it would in these cases probably be more correct, as Professor Huxley has remarked, to speak of both skull and vertebrae, both jaws and legs, &c.,--as having been metamorphosed, not one from the other, but from some common element. Naturalists, however, use such language only in a metaphorical sense: they are far from meaning that during a long course of descent, primordial organs of any kind--vertebrae in the one case and legs in the other--have actually been modified into skulls or jaws. Yet so strong is the appearance of a modification of this nature having occurred, that naturalists can hardly avoid employing language having this plain signification. On my view these terms may be used literally; and the wonderful fact of the jaws, for instance, of a crab retaining numerous characters, which they would probably have retained through inheritance, if they had really been metamorphosed during a long course of descent from true legs, or from some simple appendage, is explained.

Embryology. -- It has already been casually remarked that certain organs in the individual, which when mature become widely different and serve for different purposes, are in the embryo exactly alike. The embryos, also, of distinct animals within the same class are often strikingly similar: a better proof of this cannot be given, than a circumstance mentioned by Agassiz, namely, that having forgotten to ticket the embryo of some vertebrate animal, he cannot now tell whether it be that of a mammal, bird, or reptile. The vermiform larvae of moths, flies, beetles, &c., resemble each other much more closely than do the mature insects; but in the case of larvae, the embryos are active, and have been adapted for special lines of life. A trace of the law of embryonic resemblance, sometimes lasts till a rather late age: thus birds of the same genus, and of closely allied genera, often resemble each other in their first and second plumage; as we see in the spotted feathers in the thrush group. In the cat tribe, most of the species are striped or spotted in lines; and stripes can be plainly distinguished in the whelp of the lion. We occasionally though rarely see something of this kind in plants: thus the embryonic leaves of the ulex or furze, and the first leaves of the phyllodineous acaceas, are pinnate or divided like the ordinary leaves of the leguminosae.

The points of structure, in which the embryos of widely different animals of the same class resemble each other, often have no direct relation to their conditions of existence. We cannot, for instance, suppose that in the embryos of the vertebrata the peculiar loop-like course of the arteries near the branchial slits are related to similar conditions,--in the young mammal which is nourished in the womb of its mother, in the egg of the bird which is hatched in a nest, and in the spawn of a frog under water. We have no more reason to believe in such a relation, than we have to believe that the same bones in the hand of a man, wing of a bat, and fin of a porpoise, are related to similar conditions of life. No one will suppose that the stripes on the whelp of a lion, or the spots on the young blackbird, are of any use to these animals, or are related to the conditions to which they are exposed.

The case, however, is different when an animal during any part of its embryonic career is active, and has to provide for itself. The period of activity may come on earlier or later in life; but whenever it comes on, the adaptation of the larva to its conditions of life is just as perfect and as beautiful as in the adult animal. From such special adaptations, the similarity of the larvae or active embryos of allied animals is sometimes much obscured; and cases could be given of the larvae of two species, or of two groups of species, differing quite as much, or even more, from each other than do their adult parents. In most cases, however, the larvae, though active, still obey more or less closely the law of common embryonic resemblance. Cirripedes afford a good instance of this: even the illustrious Cuvier did not perceive that a barnacle was, as it certainly is, a crustacean; but a glance at the larva shows this to be the case in an unmistakeable manner. So again the two main divisions of cirripedes, the pedunculated and sessile, which differ widely in external appearance, have larvae in all their several stages barely distinguishable.

The embryo in the course of development generally rises in organisation: I use this expression, though I am aware that it is hardly possible to define clearly what is meant by the organisation being higher or lower. But no one probably will dispute that the butterfly is higher than the caterpillar. In some cases, however, the mature animal is generally considered as lower in the scale than the larva, as with certain parasitic crustaceans. To refer once again to cirripedes: the larvae in the first stage have three pairs of legs, a very simple single eye, and a probosciformed mouth, with which they feed largely, for they increase much in size. In the second stage, answering to the chrysalis stage of butterflies, they have six pairs of beautifully constructed natatory legs, a pair of magnificent compound eyes, and extremely complex antennae; but they have a closed and imperfect mouth, and cannot feed: their function at this stage is, to search by their well-developed organs of sense, and to reach by their active powers of swimming, a proper place on which to become attached and to undergo their final metamorphosis. When this is completed they are fixed for life: their legs are now converted into prehensile organs; they again obtain a well-constructed mouth; but they have no antennae, and their two eyes are now reconverted into a minute, single, and very simple eye-spot. In this last and complete state, cirripedes may be considered as either more highly or more lowly organised than they were in the larval condition. But in some genera the larvae become developed either into hermaphrodites having the ordinary structure, or into what I have called complemental males: and in the latter, the development has assuredly been retrograde; for the male is a mere sack, which lives for a short time, and is destitute of mouth, stomach, or other organ of importance, excepting for reproduction.

We are so much accustomed to see differences in structure between the embryo and the adult, and likewise a close similarity in the embryos of widely different animals within the same class, that we might be led to look at these facts as necessarily contingent in some manner on growth. But there is no obvious reason why, for instance, the wing of a bat, or the fin of a porpoise, should not have been sketched out with all the parts in proper proportion, as soon as any structure became visible in the embryo. And in some whole groups of animals and in certain members of other groups, the embryo does not at any period differ widely from the adult: thus Owen has remarked in regard to cuttle-fish, 'there is no metamorphosis; the cephalopodic character is manifested long before the parts of the embryo are completed;' and again in spiders, 'there is nothing worthy to be called a metamorphosis.' The larvae of insects, whether adapted to the most diverse and active habits, or quite inactive, being fed by their parents or placed in the midst of proper nutriment, yet nearly all pass through a similar worm-like stage of development; but in some few cases, as in that of Aphis, if we look to the admirable drawings by Professor Huxley of the development of this insect, we see no trace of the vermiform stage.

How, then, can we explain these several facts in embryology,--namely the very general, but not universal difference in structure between the embryo and the adult;--of parts in the same individual embryo, which ultimately become very unlike and serve for diverse purposes, being at this early period of growth alike;--of embryos of different species within the same class, generally, but not universally, resembling each other;--of the structure of the embryo not being closely related to its conditions of existence, except when the embryo becomes at any period of life active and has to provide for itself;--of the embryo apparently having sometimes a higher organisation than the mature animal, into which it is developed. I believe that all these facts can be explained, as follows, on the view of descent with modification.

It is commonly assumed, perhaps from monstrosities often affecting the embryo at a very early period, that slight variations necessarily appear at an equally early period. But we have little evidence on this head--indeed the evidence rather points the other way; for it is notorious that breeders of cattle, horses, and various fancy animals, cannot positively tell, until some time after the animal has been born, what its merits or form will ultimately turn out. We see this plainly in our own children; we cannot always tell whether the child will be tall or short, or what its precise features will be. The question is not, at what period of life any variation has been caused, but at what period it is fully displayed. The cause may have acted, and I believe generally has acted, even before the embryo is formed; and the variation may be due to the male and female sexual elements having been affected by the conditions to which either parent, or their ancestors, have been exposed. Nevertheless an effect thus caused at a very early period, even before the formation of the embryo, may appear late in life; as when an hereditary disease, which appears in old age alone, has been communicated to the offspring from the reproductive element of one parent. Or again, as when the horns of cross-bred cattle have been affected by the shape of the horns of either parent. For the welfare of a very young animal, as long as it remains in its mother's womb, or in the egg, or as long as it is nourished and protected by its parent, it must be quite unimportant whether most of its characters are fully acquired a little earlier or later in life. It would not signify, for instance, to a bird which obtained its food best by having a long beak, whether or not it assumed a beak of this particular length, as long as it was fed by its parents. Hence, I conclude, that it is quite possible, that each of the many successive modifications, by which each species has acquired its present structure, may have supervened at a not very early period of life; and some direct evidence from our domestic animals supports this view. But in other cases it is quite possible that each successive modification, or most of them, may have appeared at an extremely early period.

I have stated in the first chapter, that there is some evidence to render it probable, that at whatever age any variation first appears in the parent, it tends to reappear at a corresponding age in the offspring. Certain variations can only appear at corresponding ages, for instance, peculiarities in the caterpillar, cocoon, or imago states of the silk-moth; or, again, in the horns of almost full-grown cattle. But further than this, variations which, for all that we can see, might have appeared earlier or later in life, tend to appear at a corresponding age in the offspring and parent. I am far from meaning that this is invariably the case; and I could give a good many cases of variations (taking the word in the largest sense) which have supervened at an earlier age in the child than in the parent.

These two principles, if their truth be admitted, will, I believe, explain all the above specified leading facts in embryology. But first let us look at a few analogous cases in domestic varieties. Some authors who have written on Dogs, maintain that the greyhound and bulldog, though appearing so different, are really varieties most closely allied, and have probably descended from the same wild stock; hence I was curious to see how far their puppies differed from each other: I was told by breeders that they differed just as much as their parents, and this, judging by the eye, seemed almost to be the case; but on actually measuring the old dogs and their six-days old puppies, I found that the puppies had not nearly acquired their full amount of proportional difference. So, again, I was told that the foals of cart and race-horses differed as much as the full-grown animals; and this surprised me greatly, as I think it probable that the difference between these two breeds has been wholly caused by selection under domestication; but having had careful measurements made of the dam and of a three-days old colt of a race and heavy cart-horse, I find that the colts have by no means acquired their full amount of proportional difference.

Terms of use | Copyright © 2017 Farlex, Inc. | Feedback | For webmasters